

Une place majeure de la protection intégrée dans le programme de R/D

Programme de R/D ARVALIS: 6 défis

Défi 1 : Augmenter et régulariser les rendements

Défi 2 : Produire et conserver des **matières premières** adaptées aux diffé débouchés et procédés industriels

Défi 3: Bâtir et promouvoir une **protection intégrée** des cultures performant et durable vis-à-vis des bio-agresseurs et désordres physiologiques : maladies, ravageurs, adventices, verse, bourgeonnement, etc.

Défi 4 : Gérer et valoriser les potentialités du sol, **les ressources** hydriques minérales

Défi 5 : Evaluer et améliorer **la durabilité des systèmes** de production et notamment leurs performances économiques

Défi 6: Valoriser les **innovations technologiques et méthodologiques** pour l'expérimentation et la conduite des exploitations

30% des ressources R/D contribuent à tester et rechercher des solutions de protection des cultures et des graines et tubercules (22% ressources dédiées)

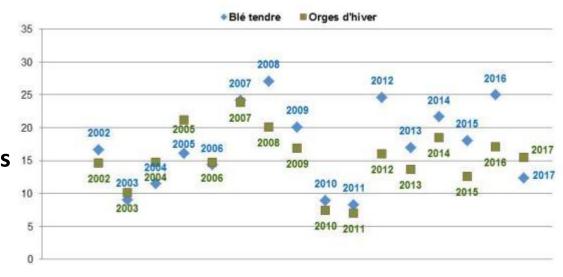
Bioagresseurs des grandes cultures : nombreux!

Cultures	Maladies	Ravageurs	Adventices	Régulations	
Blés/Triticale	11	17	nombreuses	verse	
Orges	14	12	nombreuses	verse	
Maïs	3	15	nombreuses		
Sorgho	1	6	nombreuses		
Pomme de terre	8	4	nombreuses	Défanage Inhibition germination	
Lin fibre	9	4	nombreuses	Verse	
Tabac	12	4	nombreuses dont orobanche	Inhibition bourgeon	
Plantes fourragères (luzerne)	6	10	nombreuses dont orobanche cuscute	27 1 A & & A &	

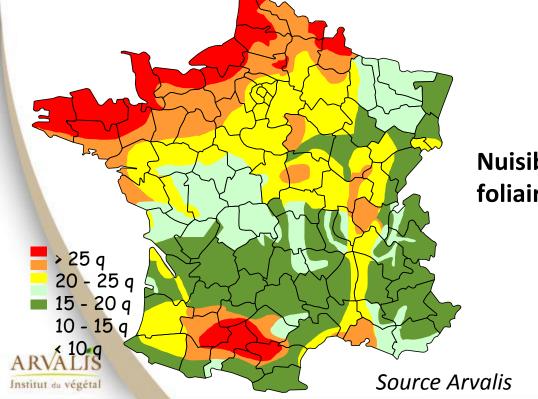
Chrysomèle

du maïs

Et des parasites émergents ou en développement...


ARV

Institut du végétal

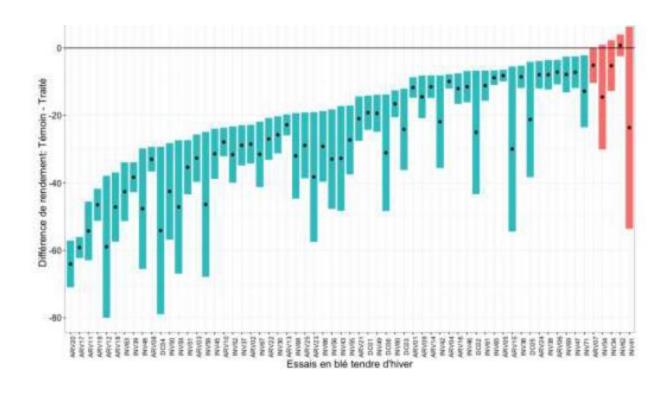

Orobanche (plante parasite)

Nuisibilités : exemple des Maladies foliaires des céréales à paille

> Variation interannuelle des 15 écarts Traité/Non Traité 10 (blé et orge) 5

Source Arvalis

Nuisibilités régionales maladies foliaires du blé tendre

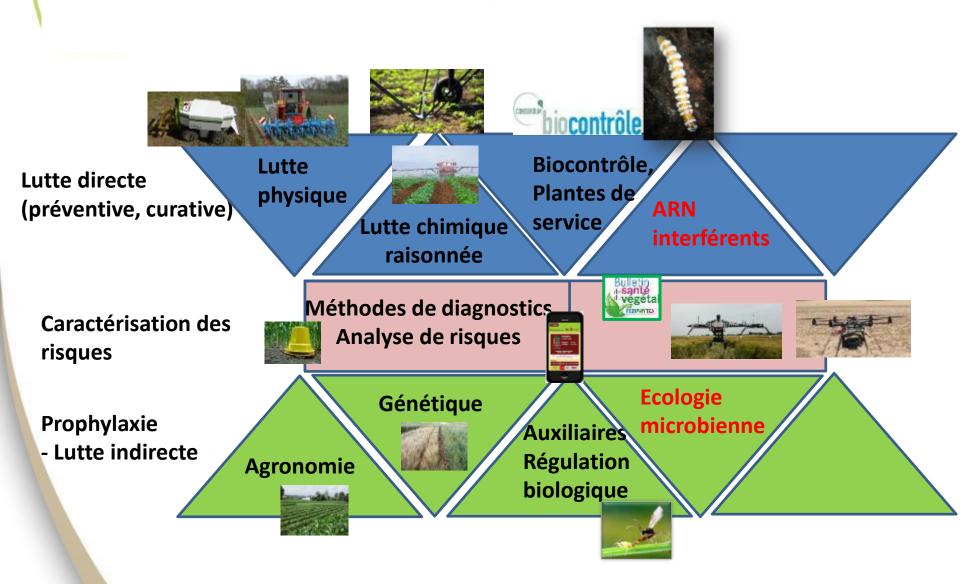


Nuisibilité des adventices dans le blé

Différence de rendement entre parcelles non traitées et parcelles traitées herbicides sur 63 essais en blé tendre (source : Cordeau et al, 2016). La moyenne de l'écart est établie par un point noir, la longueur de la barre donne l'intervalle de confiance à 95%. Significatif en bleu, non significatif en rouge (seuil de 5 %).

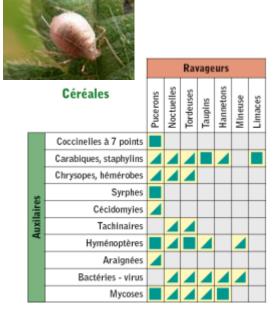
0 à 60 q/ha de nuisibilité, en moyenne 20 q/ha

Parfois un enjeu de santé publique: cas de


l'ambroisie

Protection intégrée des cultures

Prophylaxie


Agronomie :

PIC

- ✓ Rotations
- ✓ Plantes de service: biofumigation, couverts ...
- ✓ Travail du sol
- ✓ Techniques culturales (dates, densité, fertilisation)
- ✓ Gestion des résidus de récolte, gestion des menues-paille.....
- Régulation naturelle par les auxiliaires
- Génétique

Régulation potentielle importante

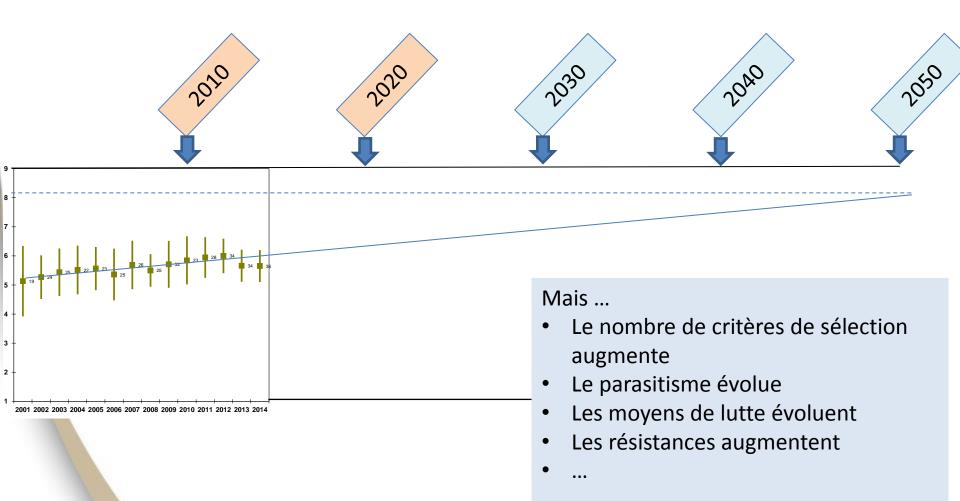
Régulation potentielle secondaire

Source : ACTA et ITA

Identifier des traits de résistance aux bioagresseurs

Citations cibles prioritaires	Travaux en cours sur blé tendre
Piétin échaudage	Projet FSOV « Take NOTAII » PDC
JNO	Projet FSOV « blé tendre JNO » RV
Mosaïques	Projet FSOV « Mosaïc » sur BT et BD DH
Critères spécifiques à AB	Épreuves CTPS, pouvoir couvrant CASDAR Semences « ECOVAB » et « Carie ABBLE »
Maladies	Projet FSOV Rouille Brune PDC Projet FSOV septoriose RenSeq DH H2020 en dépôt RustWatch (PDC) FSOV Michrodochium

No.	
Citations cibles prioritaires	Travaux en cours sur orges
Mo <mark>sa</mark> ïques	Projet CASDAR semences : MOSA HORDEUM
Résist <mark>an</mark> ce au piétin échaud <mark>age</mark>	Take NOTAII (FSOV)
Comporte <mark>me</mark> nt des variétés OH à JNO	<u>Projet FSOV JNO orge étude de la variabilité</u> <u>et recherche de marqueurs</u>



Progrès génétique tendanciel sur la septoriose du blé

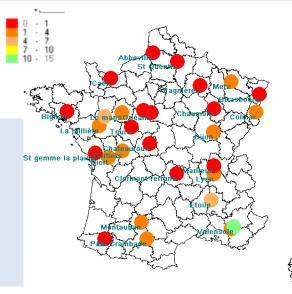
24/05/2018

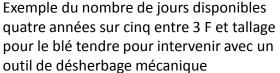
Caractérisation du risque

- Observations (pièges, réseaux de suivi,...)
- Identifications
- Modèles
- Outils d'aide à la décision



Lutte physique


- Désherbage mécanique dont robots
- Défanage mécanique ou thermique
- Désinfection thermique des semences
- Ventilation au stockage...



Biocontrôle et plantes-pièges

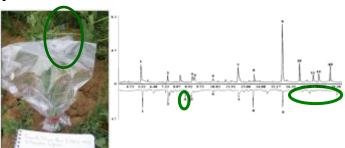
Biocontrôle contre les maladies et ravageurs

- Substances naturelles
- Micro-organismes (champignons entomopathogènes, nématodes entomopathogènes, champignons antagonistes...),
- Eliciteurs, stimulateurs de défense des plantes
- Ecologie chimique

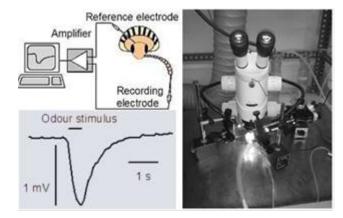
Bioherbicides, allélopathie

Biocontrôle comme inhibiteur de la germination

Plantes pièges (pucerons, altises, nématodes...)

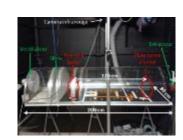

	Cultures	Macro- organismes	Microorganismes	Médiat.	Substances Naturelles
	Céréales à paille		Cerall ® (Pseudomonas chlororaphis MA432) → carie Polyversum ® (Pythium oligandrum M1)→ Fusarium		Vacciplant GC® (laminarine)→SDP blé, orge Soufre Nombreuses spécialités (→ oïdium) Coopseed® (sulfate de cuivre) → TS céréales Silicosec® (terre de diatomée) → ravageurs des denrées stockées)
	Maïs	Trichotop ® Maïs / TR16+® (Trichogramma brassicae)→pyrale	Helicovex [®] (virus Helicoverpa armigera)→Héliothis Ostrinil [®] (Beauvaria bassiana strain 147) →pyrale Costar [®] (Bt var kurstaki) →chenilles phytophages		Success 4® (Spinosad, extrait de Saccharopolyspora spinosa) → pyrale, chenilles phytophages Success GR → taupins
	P.de terre		Novodor FC® (Baccillus thurengiensis) → doryphore Naturalis® (Beauvaria bassiana) → taupins Costar® (Bt var kurstaki) → chenilles phytophages		Success 4®→coléoptères phytophages Huile de vaseline Nombreuses spécialités →virus non persistants Beloukha® (acide pelargonique) → défanage Biox-M® (huile de menthe verte) →antigerminatif
	Tabac		Flocter (Bacillus firmus i-1582) → nématodes Costar® (Bt var kurstaki) → chenilles phytophages		Huile de paraffine Nombreuses spécialités →virus non persistants PREV-AM (huile d'orange douce) →aleurodes
old	Crucifères oléagineuses	Aliendor [®] (Diaretiella rapae) → Pucerons	Ballad [®] (Bacillus pumilis QST 2808) →sclérotinia Poylversum [®] (Pythium oligandrum M1→ sclérotinia Contans WG [®] (Coniothyrium minitans)→champignons autres que pythiacées (sclérotinia)		
	Traitements généraux		Dipel DF® / Delfin® (Bacillus thuringiensis var. kurstaki) → Chenilles phytophages		Sluxx HP®/Ironmax® (phosphate ferrique)→limaces

Ecologie chimique


Comment modifier les relations entre un ravageur cible et sa plante hôte?

1 - Capter les odeurs émises par les plantes

2 - Sélectionner les substances contenues dans ces odeurs et qui font réagir le ravageur

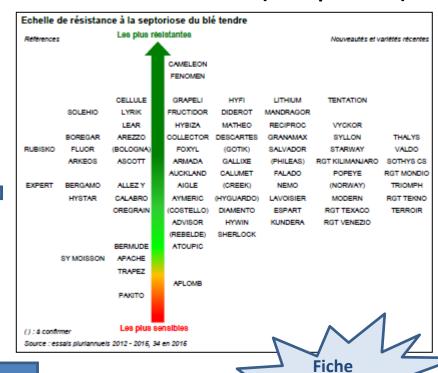

Travaux en cours:

- **Bruche** de la fève (avec INRA, Terres Inovia)
- Pyrale du maïs (avec INRA)
- Taupins (avec Université Gembloux)

3 - Elaborer un composé attractif et le tester

Au champ

En conditions contrôlées


Combinaison des leviers

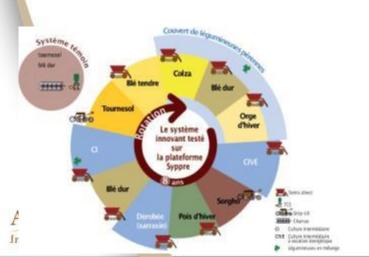
Ex : diagnostic et génétique sur blé tendre

Modèle d'évaluation des risques

Résistance des variétés (ex septoriose)

Fiche CEPP disponible

Economie potentielle de 25% des fongicides


disponible

Approche systèmes de culture

- Projet collaboratif inter instituts avec implication des producteurs
- Mettre au point des systèmes de production ambitieux combinant performance et sobriété/intrants

Un outil d'évaluation multicritère : Systerre®

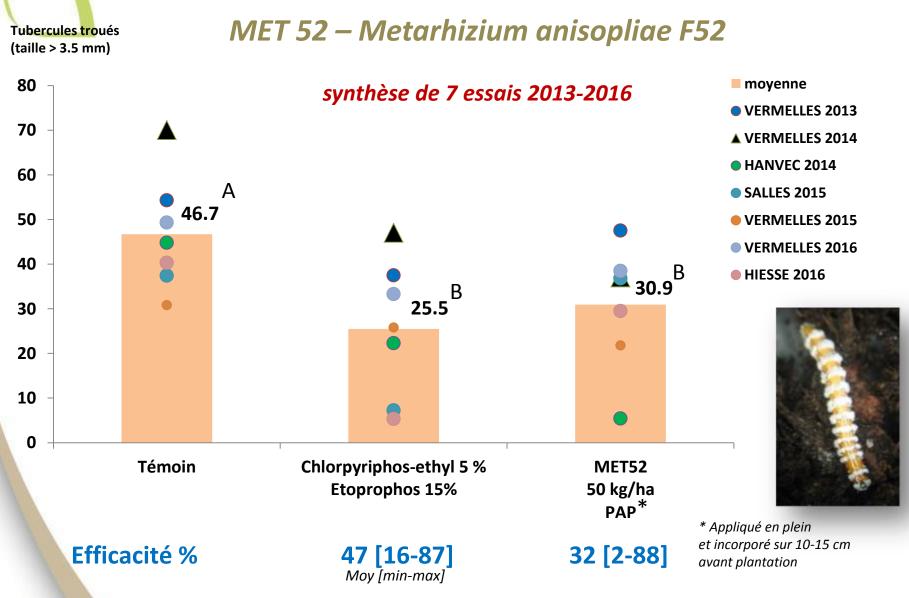
PIC et lutte contre les taupins

Lutte directe

- Lutte chimique raisonnée : évaluation des innovations
- Biocontrôle: substances naturelles et microorganismes, confusion sexuelle (Projet TAUPIN'up), écologie chimique (avec Université Gembloux)

Caractérisation du risque

Modélisation facteurs de risques (avec INRA IGEPP)


Prophylaxie

Lancement nouveau projet STARTAUP : écologie, itinéraires innovants

Champignon entomopathogène

Lutte contre la jaunisse nanisante sans imidaclopride

Aujourd'hui Pyréthrinoïdes: Lutte choix directe

Demain?

Risque résistance pyréthinoïdes

Quantification virus qPCR

Nouveaux produits: TS ou TPA

Pucerons et virus avant la culture

OAD (météo, surveillance pucerons /

PIC

Caractérisation du risque

Prophylaxie

Identification des pucerons et virus

Gestion interculture

(Choix espèces Cl,

repousses)

Date de semis

positionnement (s)

Suivi % plantes habitées

Poursuite travaux tolérance identification sensibilité variétale, intérêt mélanges?

(environnement)

Suivi ailés

biologique

Plantes de service

Push plantes compagnes

virus, ITK, environnement ...)

- Pull avec céréales plus attractives ou précoces Évaluer et favoriser le contrôle
- Variétés OH tolérantes

Alternatives en R/D chez ARVALIS: agronomie et approche système

Gestion du risque piétin verse : activer tous les leviers agronomiques

_		+	
turales	Résistance variétale	V	 Les variétés avec les gènes Pch1 et Pch2 confèrent un bon niveau de résistance (Note GEVES ≥ 5). La résistance est encore plus élevée chez les variétés qui cumulent les deux gènes.
	Rotation	V	 Les rotations courtes favorisent la maladie. Les successions de bié sur bié qui laissent derrière eux des résidus contaminés sont à éviter.
nos on	Date de semis	\bigvee	Les semis tardifs limitent les contaminations automnales.
Incidence des techniques	Densité de semis	\bigvee	Les faibles densités de semis limitent les contaminations de proximité entre les tiges.
	Fertilisation azotée	\bigvee	Les fortes doses d'azote augmentent la sévérité de la maladie.
	Sol	\bigvee	Le plétin verse est agressif sur les sois sableux, de crale et ilmoneux.
	Travall du sol / enfoulssement / broyage des résidus	\bigvee	 Le labour permet d'enfouir les résidus mais également de faire remonter à la surface des résidus contaminés. Le labour contribue ainsi à la survie de l'inoculum et est donc déconseillé.

Construire ensemble les systèmes

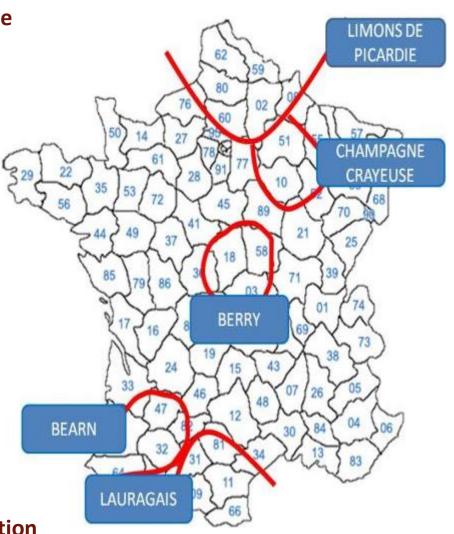
de culture de demain

Un projet dans la durée

Une ambition en quelques chiffres

- + 10 % de productivité/ha
- 10 à 40 % d'intrants
- 10 à 30 % d'émissions de gaz à effet de serre
- + 1 à + 4 pour mille par an de carbone dans le sol

Le projet Syppre vise l'horizon 2025



Un projet / 5 régions

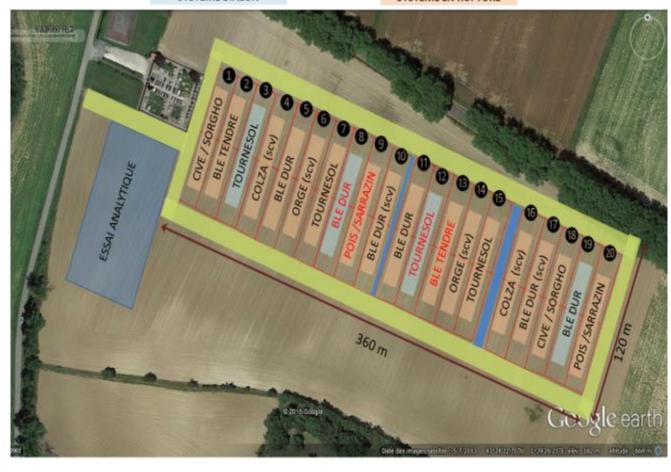
Construire ensemble les systèmes de culture

Une approche nationale déclinée dans 5 milieux agricoles contrastés de grandes cultures

- Plateformes génératrices d'innovation
- Pilotage inter-institut
- Réseaux d'agriculteurs innovants
- Implication de partenaires locaux

de demain

Lieu d'échanges et de concertation avec 40 partenaires régionaux



Plan dispositif Lauragais

SYSTÈME ETALON

SYSTÈME EN RUPTURE

Pente 5.6%

13.3%

Problématiques régionales (s'additionnant aux problématiques nationales) Et principales stratégies testées

	Objectifs locaux	Principales stratégies expérimentées	Partenaires locaux
PICARDIE Limon profonds Betteraves /Légumes/SCOP	 ↗ Production – dont Biomasse ↘ Azote minéral ሯ Fertilité sol (MO, érosion, tassement) 	 Rotation - durée, diversité (lég, maïs) Cultures intermédiaires Travail du sol profond limité Alternance de techniques de travail du sol 	 3 agriculteurs Agrotransfert, CA60, Uneal, UPJV, Unilet, INRA, CETA ht de somme, Grpe Carré, Noriap, Nord négoce
CHAMPAGNE Craie Betteraves / SCOP	 ↗ Production – dont Biomasse ↘ Azote minéral ఢ Qualité technologique ሯ Fertilité sol (érosion, tasst) 		 2 Agriculteurs CA51, CA10, CRA CA, Cristal Union, Vivescia, Acolyance, Agrotransfert, FNAMS, Soufflet, CETA de Romilly
BERRY Arg. calcaires sup. SCOP	 Robustesse (€) Fertilité sol (\(\sigma\)Azote min.) Maîtrise adventices 		4 Agriculteurs Axereal, CA36, ETS Villemont
LAURAGAIS Argilo-calcaires Coteaux Sec Tourn./Blé dur	 ↗ Production – dont Biomasse ↗ Qualité technologique ↘ Azote ሯ Fertilité sol (érosion) 		 1 Agriculteur CRA MP, CG31, INRA, PURPAN, ENSAT, LEGTA, Val de Gascogne, Arteris, SCA Qualisol, Agro d'Oc
BEARN Argiles humifères – Sec Mono Maïs	→ Phyto → Maîtrise ravageurs, adventices = Production/marge	,	Agriculteur : à définir CA 64, Euralis

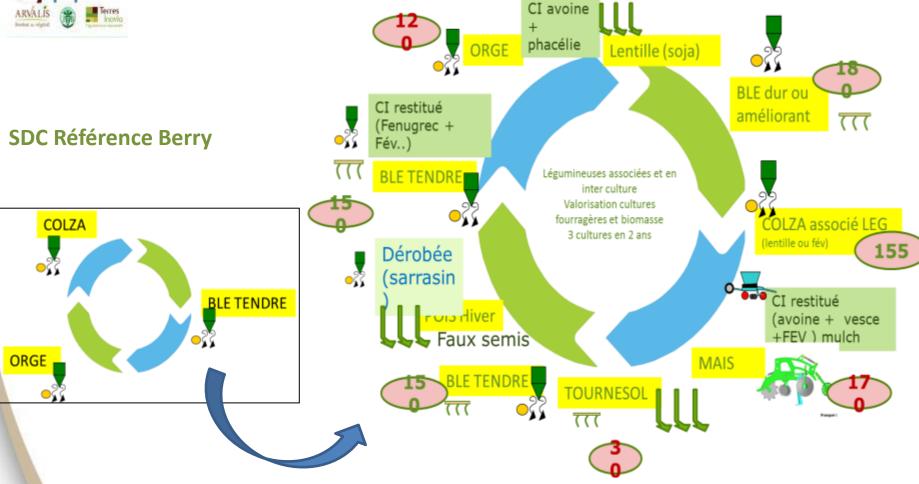
Sols argilo-calcaires du Berry

CR + Réseau : Gilles Sauzet

PO: Gilles Sauzet, Thierry Moulins

IR: Edouard Baranger

Institut du végétal



SDC rupture BERRY

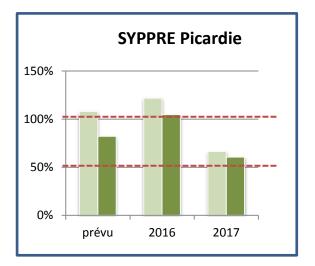
Plateforme Berry (Champagne Berrichonne)

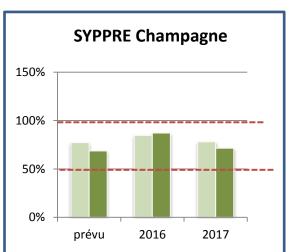
- Rotation de base : SCOP
- Enjeux locaux : **↗ Fertilité sol (dt obj ↘ Azote), ↗** maîtrise adventices
- Leviers : rotation durée, diversité (lentille, maïs), lutte intégrée des adventices, alternance de technique de travail du sol

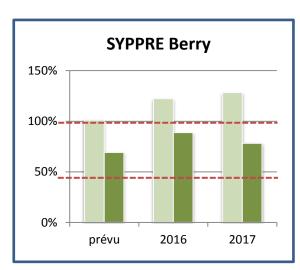
Ex SYPRRE BERRY: Evaluation ex-ante

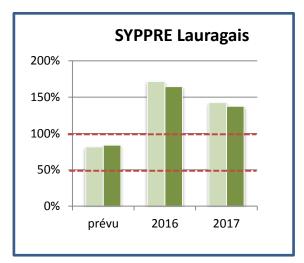
	Berry- SDC	Berry-	En % du
	étalon_	Prototype 4	SDC étalon
Marge semi-nette (€/Ha)	523.7	684.5	131%
Produit brut (€/ha)	1190.3	1243.6	104%
NRJ brute totale estimée (MJ/Ha)	195480	176737	90%
IFT Herbicide	2.9	1.9	65%
IFT Hors Herbicide	2.0	1.2	58%
Efficience économique des intrants	1.37	2.22	162%
Marge Brute avec aides (€/ha)	920.0	1109.8	121%
Marge Brute avec aides (€/he)	348.5	455.1	131%
Matière Active Total (g/ha)	2473	1791	72%
Matière Active Herbicide (g/ha)	2069	1351	65%
N Total (kg/ha)	156.7	101.2	65%
Temps de travail Total (h/ha)	2.6	2.4	92%
Consommation Energie Primaire			
Totale (MJ/ha)	11598	8597	74%
Emissions GES Totales			
(kgéqCO2/ha)	2133	1453	68%

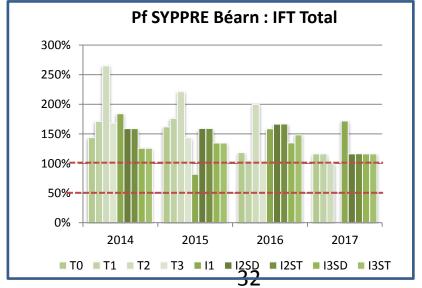
Le prototype en rupture atteint les objectifs à priori

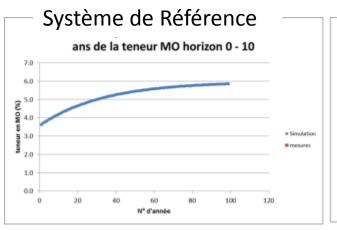


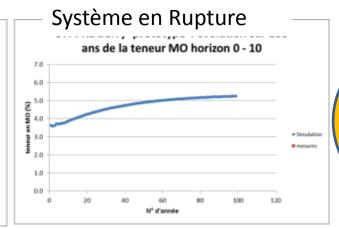



Premier résultats IFT Totaux


Sdc Témoins

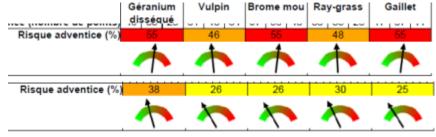

Sdc Innovants



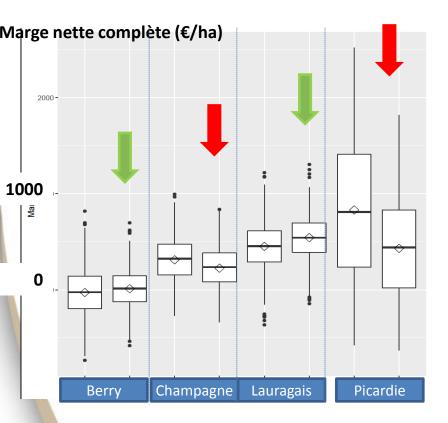

Ex: SYPPRE BERRY

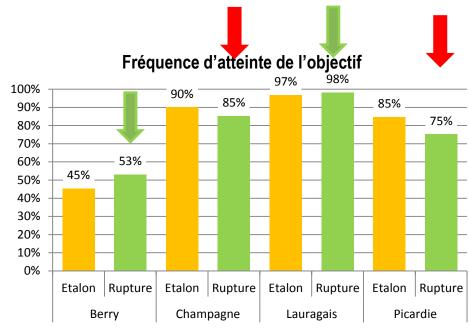
Évaluation ex-ante – Critères agronomiques

Évolution des teneurs en matière Organique (AMG)



Risque Adventices - Odera


Référence


Système en rupture

Situation améliorée à priori

Résultats : sensibilité des marges nettes complètes aux prix des cultures (rendements invariants)

- ✓ Mêmes tendances
- ✓ Effets plus marqués que l'effet « rendement »

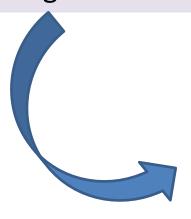
Accompagnement du changement

Dossier PA Juin 2017 - N° 445 : Systèmes de culture : à chacun de choisir ses règles du jeu

CHANGER DE PRATIQUES: trois étapes pour réussir



Figure 1: Schéma de la mise en œuvre des changements de pratiques dans une exploitation.



24/05/2018

Conclusions PIC: besoin d'innovations et de temps

- Nombreux bioagresseurs en évolution constante
- Protection nécessaire
- Peu d'alternatives aux PPP opérationnelles en grande culture

<u>Court terme</u>: optimiser la protection des cultures en valorisant les résistances génétiques actuelles et les OAD

<u>Moyen terme</u>: des innovations de rupture en cours de R/D, porteuses de solutions pour lutter contre les bioagresseurs avec moins de phytos

<u>Long terme</u>: progrès génétique sur maladies, ravageurs,...

